Big Data Analytics

SOEN 471/6111
Fermé
Concordia University
Montreal, Quebec, Canada
tristan glatard
Associate Professor
(1)
2
Chronologie
  • janvier 18, 2023
    Début de expérience
  • avril 15, 2023
    Fin de expérience
Expérience
5/5 match de projet
Dates fixées par le expérience
Entreprises privilégiées
Montreal, Quebec, Canada
Any
N'importe qu'elle industrie

Portée de Expérience

Catégories
Apprentissage automatique Intelligence artificielle Analyse des données Modélisation des données Data science
Compétences
python data analytics research
Objectifs et capacités de apprenant.es

A team of 3-5 students will implement a data-science project using Big Data technologies Apache Spark, Dask or scikit-learn.

Apprenant.es

Apprenant.es
Finissant
Tout niveau
150 apprenant.es dans le programme
Projet
90 heures par apprenant.e
Les apprenant.es s'auto-attribuent
Équipes de 4
Résultats et livrables attendus
  • Project summary: The project summary will be a 400-word abstract available as a Markdown (.md) document in a public or private GitHub repository. The summary will report on project definition and model design. It will describe the dataset used in the project and its main characteristics (number and type of features), the research questions to be addressed in the project, the class of models to be applied to the dataset, and the algorithms that will be used. At least two algorithms must be used and compared.
  • Project data model: The project data model will be delivered as a Jupyter notebook containing code and explanations to implement data preparation, model training and preliminary model evaluation.
  • Final project presentation: The final project presentation will go through the final Jupyter notebook implemented for the project, putting special emphasis on model evaluation and summarizing the other project milestones.
Chronologie du projet
  • janvier 18, 2023
    Début de expérience
  • avril 15, 2023
    Fin de expérience

Exemples de projets

Exigances

In this assignment, students will work on a dataset to answer specific exploratory questions by applying one or more techniques seen in class: supervised learning, recommender systems, unsupervised clustering, frequent itemset mining, data stream analytics, graph analysis, and similarity search. Students will implement the project in Python, using Jupyter notebooks and a data analytics library among Apache Spark, Dask or scikit-learn.

As a participating organization, you’ll be asked to provide a particular dataset and a first set of related questions to be answered by the team using the dataset.

The expected project milestones are as follows:

  1. Project definition: students will summarize the project, including: (1) the dataset of interest, (2) the set of exploratory questions to be answered with the dataset, using techniques studied in class.
  2. Model design: students will choose a class of models in {supervised learning, recommender systems, unsupervised clustering, frequent itemset mining, data stream analytics, graph analysis, similarity search}. They will outline how the data model could be applied to the dataset to answer the exploratory question(s). They will research algorithms and techniques to implement this class of model.
  3. Data preparation: students will inspect the dataset, identify missing data, outliers, data types (categorical data in particular), and write Apache Spark or Dask programs to correct for potential issues.
  4. Model implementation: students will implement the model with Apache Spark, Dask or scikit-learn.
  5. Model evaluation: students will identify evaluation metrics for the model, implement, and discuss them.

Critères supplé mentaires pour entreprise

Les entreprises doivent répondre aux questions suivantes pour soumettre une demande de jumelage pour cette expérience:

  • Q - Case à cocher