Data Analytics - Machine Learning

DAB 200
Fermé
St. Clair College
Windsor, Ontario, Canada
Data Analytics Instructor
(2)
2
Chronologie
  • août 6, 2020
    Début de expérience
  • août 15, 2020
    Project Scope Meeting
  • août 22, 2020
    Progress Report
  • septembre 8, 2020
    Final Presentation
  • novembre 10, 2020
    Fin de expérience
Expérience
3/2 match de projet
Dates fixées par le expérience
Entreprises privilégiées
N'importe où
Any
N'importe qu'elle industrie

Portée de Expérience

Catégories
Technologie de l'information Analyse des données
Compétences
data analysis data analysis, data science concepts, text analytics model development deployment and documentation business analytics research
Objectifs et capacités de apprenant.es

In this course, students will learn to identify what machine learning is and is not, be able to explain the different types of machine learning and describe its various applications. The basic structure of machine learning algorithms will be discussed in more general concepts as well, such as feature set, bias and variance, train/dev/test sets, and performance measures. The bulk of the course will focus on building and applying statistical and predictive models in solving practical problems.

Apprenant.es

Apprenant.es
Diplôme
Tout niveau
40 apprenant.es dans le programme
Projet
150 heures par apprenant.e
Les apprenant.es s'auto-attribuent
Équipes de 3
Résultats et livrables attendus

The final project deliverables will include:

  • A report on students’ findings and details of the analytics solution.
  • A final presentation of the solution and recommendations to your organization.
  • Future collaboration ideas will be identified based on current project outcomes.
Chronologie du projet
  • août 6, 2020
    Début de expérience
  • août 15, 2020
    Project Scope Meeting
  • août 22, 2020
    Progress Report
  • septembre 8, 2020
    Final Presentation
  • novembre 10, 2020
    Fin de expérience

Exemples de projets

Exigances

The course provides an opportunity for businesses and learners to collaborate to identify and translate a real business problem into an analytics problem. The project also includes data collection & preparation, data modeling and analysis with the potential to include predictive modeling, and a solution deployment plan. Project results/ recommendations will be communicated in a report document and a final presentation.

You should submit a high-level proposal/business problem statement including relevant data sets and definitions, a list of acceptable tools (if applicable), and expected deliverables. Business datasets could be provided based on a non-disclosure agreement or in an anonymized/synthetic data format that is relevant to your organization and business problem. The course instructor will review the documents to confirm the scope and timing of the proposed problem and its alignment with the course requirements.

To ensure students’ learning objectives are achieved, we recommend that the datasets are large in size. Data need not be ‘clean’; it is advantageous to the students’ learning experience to require hygiene prior to analysis. Similarly, if more than one database is provided, which must be conjoined, students will be required to integrate them. This supports the learning experience and minimizes time spent on data preparation.

Critères supplé mentaires pour entreprise

Les entreprises doivent répondre aux questions suivantes pour soumettre une demande de jumelage pour cette expérience:

  • Q - Case à cocher
  • Q - Case à cocher
  • Q - Case à cocher
  • Q - Case à cocher