Applied Artificial Intelligence

Chronologie
-
janvier 17, 2022Début de expérience
-
janvier 22, 2022Project Scope Meeting
-
février 19, 2022Mid-term review
-
mars 26, 2022Fin de expérience
Chronologie
-
janvier 17, 2022Début de expérience
-
janvier 22, 2022Project Scope Meeting
Meeting between students and company to confirm: project scope, communication styles, and important dates.
-
février 19, 2022Mid-term review
Students will review their progress with company and the course instructor.
-
mars 26, 2022Fin de expérience
Portée de Expérience
Catégories
Technologie de l'information Analyse des donnéesCompétences
communication research data analysisThe purpose of this project is to provide students with an opportunity to apply existing Machine Learning algorithms to wide application area. In the lecture, students are introduced to the use of classical artificial intelligence techniques and the latest deep learning algorithms, which they would be able to apply to a project in your organization.
Classical artificial intelligence techniques include knowledge representation, heuristic algorithms, rule-based systems, probabilistic reasoning, fuzzy systems, neural networks, and genetic algorithms.
Deep learning algorithms include Convolutional Neural Networks (CNNs), Long Short Term Memory Networks (LSTMs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs).
By working with the students group, companies are able to testify their business idea, gather & analysis raw data, develop & verify AI algorithms & prototypes.
Apprenant.es
Deliverables will depend on the project and employer type. In general, they will be prototypes, analysis reports, etc.
Chronologie du projet
-
janvier 17, 2022Début de expérience
-
janvier 22, 2022Project Scope Meeting
-
février 19, 2022Mid-term review
-
mars 26, 2022Fin de expérience
Chronologie
-
janvier 17, 2022Début de expérience
-
janvier 22, 2022Project Scope Meeting
Meeting between students and company to confirm: project scope, communication styles, and important dates.
-
février 19, 2022Mid-term review
Students will review their progress with company and the course instructor.
-
mars 26, 2022Fin de expérience
Exemples de projets
Exigances
Student projects may include but are not limited to:
- Identify problems that are amenable to solution by AI methods, and which AI methods may be suited to solving a given problem
- Formalize a given problem in the language/framework of different AI methods
- Implement basic AI algorithms
- Apply basic AI knowledge and algorithms to solve problems
- Design simple software to experiment with various AI concepts and analyze results
Critères supplé mentaires pour entreprise
Les entreprises doivent répondre aux questions suivantes pour soumettre une demande de jumelage pour cette expérience:
Critères supplé mentaires pour entreprise
Les entreprises doivent répondre aux questions suivantes pour soumettre une demande de jumelage pour cette expérience:
Chronologie
-
janvier 17, 2022Début de expérience
-
janvier 22, 2022Project Scope Meeting
-
février 19, 2022Mid-term review
-
mars 26, 2022Fin de expérience
Chronologie
-
janvier 17, 2022Début de expérience
-
janvier 22, 2022Project Scope Meeting
Meeting between students and company to confirm: project scope, communication styles, and important dates.
-
février 19, 2022Mid-term review
Students will review their progress with company and the course instructor.
-
mars 26, 2022Fin de expérience