Operations Analytics and Optimization Consultancy W22

OMIS 4000
Fermé
Contact principal
Schulich School of Business
Toronto, Ontario, Canada
Assistant Professor
2
Chronologie
  • janvier 10, 2022
    Début de expérience
  • février 27, 2022
    Midway Check-In
  • avril 10, 2022
    Fin de expérience
Expérience
1/2 match de projet
Dates fixées par le expérience
Entreprises privilégiées
N'importe où
Any
N'importe qu'elle industrie

Portée de Expérience

Catégories
Modélisation financière Analyse des données Étude de marché Opérations Gestion de projet
Compétences
operations research data optimization operations management strategy simulation
Objectifs et capacités de apprenant.es

Is your organization facing an operational challenge? In this project, upper-year Schulich students will address a problem of your choosing, and perform a quantitative analysis to develop actionable recommendations that will improve efficiency and service quality. The focus is on a prescriptive approach; using mathematical and computational techniques to model and gain insight on processes/situations that have not yet arisen.

Apprenant.es

Apprenant.es
Premier cycle universitaire
Tout niveau
45 apprenant.es dans le programme
Projet
15 heures par apprenant.e
Les apprenant.es s'auto-attribuent
Équipes de 4
Résultats et livrables attendus

The final project deliverables include:

  • A 10-page business report (all mathematical/computational details are provided in an appendix).
  • A 15-minute presentation (10-minute summary and 5-minute Q&A), which industry partners can attend in person or via Skype.
Chronologie du projet
  • janvier 10, 2022
    Début de expérience
  • février 27, 2022
    Midway Check-In
  • avril 10, 2022
    Fin de expérience

Exemples de projets

Starting in January 2022, teams of 4-5 student-consultants from the Schulich School of Business will spend 60 hours per team working to improve your operational processes and service delivery.

Through applying quantitative research methodologies, mathematical concepts, and computational tools, students will identify areas where your processes can be improved or your operations streamlined.

Using Microsoft Excel and the Python programming language, they will analyze your organizational data and provide managerial insight on how you can increase productivity, improve efficiency, lower costs, and deliver a consistently better quality product or service.

Past Projects include:

  • A cost comparison between current staffing practices and several new policies for The 10 Spot, a franchise of beauty bars in Toronto.
  • A systematic scheduling solution that fairly assigns students to academic cohorts while ensuring institutional requirements are upheld.
  • An analysis of potential rural bus routes and stop locations for the Municipality of Chatham-Kent and surrounding counties.

Students will use various tools and processes including, but not limited to:

  • Mathematical Optimization (e.g., linear and nonlinear programming, stochastic optimization).
  • Computer simulations (Monte Carlo and discrete-event).

Project proposals must answer the following questions to be considered for inclusion in this course:

  1. What problems/opportunities would you like student teams to address through this project? Please be specific.
  2. What are the benefits of this project to your organization/customers? Please describe the desired recommendations.
  3. What organizational data set(s) will you be providing to student teams? Please describe the format and the volume.

Possible areas of focus for this project include, but are not limited to:

  • Transportation and Routing
  • Inventory Management
  • Aggregate Planning
  • Asset Allocation and Insurance
  • Supply Chain Management
  • Employee Scheduling
  • Targeted Advertising
  • Energy Management
  • Risk Management
  • Process Analysis
  • Revenue Management
  • Policy Evaluation
  • Optimal Stopping
  • Appointment Scheduling
  • Financial Management
  • Inventory Modeling
  • Production Planning

Critères supplé mentaires pour entreprise

Les entreprises doivent répondre aux questions suivantes pour soumettre une demande de jumelage pour cette expérience:

  • Q1 - Case à cocher
  • Q2 - Case à cocher
  • Q3 - Case à cocher
  • Q4 - Case à cocher
  • Q5 - Case à cocher
  • Q6 - Case à cocher
  • Q7 - Case à cocher