Machine Learning 2

DAB300
Fermé
St. Clair College
Windsor, Ontario, Canada
Professor
(1)
2
Chronologie
  • septembre 21, 2020
    Début de expérience
  • août 15, 2020
    Project Scope Meeting
  • août 22, 2020
    Progress Report
  • septembre 8, 2020
    Final Presentation
  • décembre 12, 2020
    Fin de expérience
Expérience
5 projets souhaités
Dates fixées par le expérience
Entreprises privilégiées
N'importe où
Any
N'importe qu'elle industrie

Portée de Expérience

Catégories
Technologie de l'information Analyse des données
Compétences
business analytics data analysis research data analysis, data science concepts, text analytics model development deployment and documentation
Objectifs et capacités de apprenant.es

This is the second of two machine learning courses that students in our Data Analytics for Business graduate certificate program are required to take. Students gain skills in data representation, feature selection, model evaluation and improvement, as well using fully-connected and convolutional neural networks. This is a project based course where the students focus on building and applying statistical and predictive models in solving practical problems. All work is done in Python, although students will have varying familiarity with R and SQL from other coursework.

Apprenant.es

Apprenant.es
Finissant
Tout niveau
230 apprenant.es dans le programme
Projet
120 heures par apprenant.e
Les apprenant.es s'auto-attribuent
Équipes de 5
Résultats et livrables attendus

The project will provide:

  • A final report detailing the problem, attempted solutions, and results, including benchmarks, if applicable.
  • Ideas for next steps in the process based on project outcomes.
Chronologie du projet
  • septembre 21, 2020
    Début de expérience
  • août 15, 2020
    Project Scope Meeting
  • août 22, 2020
    Progress Report
  • septembre 8, 2020
    Final Presentation
  • décembre 12, 2020
    Fin de expérience

Exemples de projets

Exigances

The course provides an opportunity for businesses and learners to collaborate to identify and translate a real business problem into a machine learning problem. The project can be an end-to-end machine learning application, including data preparation, model creation and evaluation and potentially methods for deployment. Project results/ recommendations will be communicated in a final report.

You should submit a high-level proposal/business problem statement including a clear connection to machine learning, relevant data sets and definitions, a list of acceptable tools (if applicable), and expected deliverables. Business datasets could be provided based on a non-disclosure agreement or in an anonymized/synthetic data format that is relevant to your organization and business problem. The course instructor will review the documents to confirm the scope and timing of the proposed problem and its alignment with the course requirements.

Critères supplé mentaires pour entreprise

Les entreprises doivent répondre aux questions suivantes pour soumettre une demande de jumelage pour cette expérience:

  • Q - Case à cocher
  • Q - Case à cocher
  • Q - Case à cocher
  • Q - Case à cocher
  • Q - Case à cocher