CSDA2020-Data Analytics Capstone Project S23

CSDA2020
Fermé
Contact principal
Schulich School of Business
Toronto, Ontario, Canada
Professor
(13)
5
Chronologie
  • août 29, 2023
    Début de expérience
  • octobre 17, 2023
    Fin de expérience
Expérience
1 projets souhaités
Dates fixées par le expérience
Entreprises privilégiées
N'importe où
Startup, Large enterprise, Non profit, Small to medium enterprise, Entreprise sociale
Banking & finance, Business & management, Consumer goods & services, Entertainment, Government

Portée de Expérience

Catégories
Apprentissage automatique Intelligence artificielle Visualisation des données Modélisation des données Data science
Compétences
data science solution deployment descriptor project proposals data analysis predictive analytics
Objectifs et capacités de apprenant.es

In the final course of the Advanced Data Science and Predictive Analytics Certificate, students spend 8 weeks creating an analytics solution/model for your organization.


This capstone project includes analysis of a real-life scenario, including business problem framing, translating to an analytical problem statement, data collection, preparation, integrating, modelling and analyzing and will result in a final report/ presentation that outlines recommendations and a solution deployment plan.

Apprenant.es

Apprenant.es
Formation continue
Tout niveau
25 apprenant.es dans le programme
Projet
40 heures par apprenant.e
Les Professeur.euses affectent les apprenant.es à des projets
Équipes de 5
Résultats et livrables attendus

Final deliverables will include:

  1. Project Proposal
  2. Sprint 1: Data Exploration, Data Preparation and Modelling
  3. Final Project Report
  4. Presentation
Chronologie du projet
  • août 29, 2023
    Début de expérience
  • octobre 17, 2023
    Fin de expérience

Exemples de projets

Your organization will need to provide relevant datasets, background information, and a high-level business question, opportunity, or challenge. Although it is the responsibility of the students to develop an appropriate analytical solution to the business problem you provide, it would be helpful if you select a business question, opportunity, or challenge is amendable to a data-driven solution (to the best of your knowledge)


Project Examples

Students can create data analytics solutions and models to assist with:

  1. Forecasting (sales, demand, market conditions)
  2. Developing a dashboard or reporting solution to provide actionable insights
  3. Improving customer retention
  4. Quantifying Customer Lifetime Value
  5. Predicting various events of interest (fraud, misdiagnosis)
  6. Getting customers to purchase more premium (up-sell) products
  7. Getting customers to purchase across multiple categories (cross-sell)
  8. Finding the best customers for a Direct Marketing initiative
  9. Customer segmentation (behavioural or transactional)
  10. Social Network Analysis (understand influencers, customer relations)
  11. Understanding customer sentiment and what they are talking about (topic modelling)
  12. Recommender systems for various items (movies, products, etc.)
  13. Market Basket Analysis to understand which items are often purchased together
  14. Predicting or forecasting a numeric value of interest (home prices, population)
  15. Visualize buyers and buyers habits over time


This project can encompass a wide range of topics that require data-driven decision making. If you are interested in determining if your use case would be applicable to this project please submit your project proposal to connect with the instructor.


To ensure students’ learning objectives are achieved, we recommend that the you complete a "client and data assessment" form