Data Science Capstone: Providing Data-Driven Solutions
Contact principal

Chronologie
-
janvier 24, 2025Début de expérience
-
avril 5, 2025Fin de expérience
Portée de Expérience
Catégories
Intelligence artificielle Visualisation des données Analyse des données Modélisation des données Data scienceCompétences
multiple models data cleansing analytical skills data science data-driven decision making machine learning deep learning data visualization python (programming language)Seneca Polytechnic's Data-Driven Solutions Capstone is designed for aspiring data science students eager to apply their analytical skills to real-world challenges. Participants will leverage their knowledge of data analysis and machine learning to tackle a specific business problem or research question using an existing dataset. This experience empowers learners to translate theoretical concepts into practical solutions, enhancing their ability to derive insights and make data-driven decisions. By collaborating with industry professionals, learners will gain valuable exposure to the nuances of applying data science in a business context.
Apprenant.es
Students will act as consultants and will work with you to solve a business problem.
Project outcomes:
- Data Preparation: Perform data cleaning, preprocessing, and exploratory analysis to ensure the dataset is ready for modeling.
- Machine Learning Component: Develop, train, and evaluate a machine learning model to solve the identified problem. Students may explore supervised, unsupervised, or deep learning techniques based on the problem domain.
- Evaluation: Assess model performance using appropriate metrics, compare multiple models, and refine as needed.
- Visualizations: Create insightful visualizations to illustrate findings, model performance, and key trends in the data.
- Presentation: Summarize the project outcomes in a final presentation, communicating the methodology, insights, and impact of their work.
Deliverables (to confirm with Elnaz):
- Project proposal
- Comprehensive data analysis report
- Documentation of the project process and outcomes
- Predictive model with performance metrics
- Evaluation results
- Data visualization
- Presentation of findings and recommendations
Chronologie du projet
-
janvier 24, 2025Début de expérience
-
avril 5, 2025Fin de expérience
Exemples de projets
Sample projects (Elnaz to confirm types of problems):
- Develop a customer segmentation model for targeted marketing campaigns
- Analyze sales data to forecast future trends and optimize inventory management
- Create a recommendation system for personalized product suggestions
- Investigate factors influencing employee turnover and propose retention strategies
- Assess the impact of social media sentiment on brand perception
- Identify key drivers of customer satisfaction using survey data
- Predict equipment failure in a manufacturing setting to enhance maintenance schedules
- Evaluate the effectiveness of a recent marketing campaign using A/B testing results
Critères supplé mentaires pour entreprise
Les entreprises doivent répondre aux questions suivantes pour soumettre une demande de jumelage pour cette expérience:
-
Q1 - Texte court
-
Q2 - Texte court
-
Q3 - Texte court
-
Q4 - Texte court
Contact principal

Chronologie
-
janvier 24, 2025Début de expérience
-
avril 5, 2025Fin de expérience