Data Science Postgraduate Project

COSC2667
Fermé
RMIT University
Melbourne, Victoria, Australia
Christopher James
Engagement Senior Coordinator
(12)
4
Chronologie
  • avril 14, 2023
    Début de expérience
  • mai 29, 2023
    Fin de expérience
Expérience
3/10 match de projet
Dates fixées par le expérience
Entreprises privilégiées
N'importe où
Any
N'importe qu'elle industrie

Portée de Expérience

Catégories
Analyse des données
Compétences
competitive analysis business analytics marketing strategy data analysis
Objectifs et capacités de apprenant.es

Students will dedicate 240 hours over a 12 week period to complete a data science based project. We ask that the client e-meets candidates for 1 hour a week to keep them on track.

This is a project-based course where students learn through meetings and informal discussions with other students, the project manager and client. Their learning is in the ’doing’, where students will carry out all the necessary steps to successfully complete the project.

All learning activities in this course are based on applying data science knowledge in a process of planning and executing a substantial research-based project or industry-sponsored capstone project experience.

Apprenant.es

Apprenant.es
étudiant.e de cycle supérieur
Tout niveau
4 apprenant.es dans le programme
Projet
240 heures par apprenant.e
Les apprenant.es s'auto-attribuent
Équipes de 4
Résultats et livrables attendus

Please see examples of previous projects above as an indication of what can be achieved. Project outcomes can be discussed once a project has been proposed.

Chronologie du projet
  • avril 14, 2023
    Début de expérience
  • mai 29, 2023
    Fin de expérience

Exemples de projets

Exigances

Examples of previous projects:

• Identify and profile customers of a retailer to better target their offering.

• Prototype approach to identifying culture in businesses using natural language processing.

• Establishing correlations and relationships between variables to improve mailouts.

• Predicting and estimating part attributes that are useful for determining.

• Analysing survey data to identify sentiment towards identified topics and product/brand.

• Predicting and identifying students at risk of failure for early intervention.

• Building of dashboards to summarise and analyse company’s performance.

• Cleaning and merging of multiple data sets to perform subsequent summarisation and analysis.

Critères supplé mentaires pour entreprise

Les entreprises doivent répondre aux questions suivantes pour soumettre une demande de jumelage pour cette expérience:

  • Q - Case à cocher
  • Q - Case à cocher